OSL Dating in Archaeology

Luminescence dating including thermoluminescence and optically stimulated luminescence is a type of dating methodology that measures the amount of light emitted from energy stored in certain rock types and derived soils to obtain an absolute date for a specific event that occurred in the past. The method is a direct dating technique , meaning that the amount of energy emitted is a direct result of the event being measured. Better still, unlike radiocarbon dating , the effect luminescence dating measures increases with time. As a result, there is no upper date limit set by the sensitivity of the method itself, although other factors may limit the method’s feasibility. To put it simply, certain minerals quartz, feldspar, and calcite , store energy from the sun at a known rate. This energy is lodged in the imperfect lattices of the mineral’s crystals. Heating these crystals such as when a pottery vessel is fired or when rocks are heated empties the stored energy, after which time the mineral begins absorbing energy again.

Luminescence Dating Laboratory

The possible role of environmental change, especially sea level change, as a stimulus for the development of human residence and migration is poorly understood. We investigate this problem by showing a record of sea-level change and coastal transformation based on a sediment core FN1 core and a Neolithic site Pingfengshan site obtained from the Funing bay on the northeast coast of Fujian, China. Samples from FN1 core and Pingfengshan site were taken for grain size ananlyses and for optically stimulated luminescence OSL dating.

The blue-light stimulated OSL signals were measured by the single aliquot regenerative dose SAR protocol to determine the ages of of the samples.

most methods used for dating with quartz. Optically stimulated luminescence. (OSL). A second means of releasing the electrons stored within minerals is by.

Optically-Stimulated Luminescence is a late Quaternary dating technique used to date the last time quartz sediment was exposed to light. As sediment is transported by wind, water, or ice, it is exposed to sunlight and zeroed of any previous luminescence signal. Once this sediment is deposited and subsequently buried, it is removed from light and is exposed to low levels of natural radiation in the surrounding sediment.

Through geologic time, quartz minerals accumulate a luminescence signal as ionizing radiation excites electrons within parent nuclei in the crystal lattice. A certain percent of the freed electrons become trapped in defects or holes in the crystal lattice of the quartz sand grain referred to as luminescent centers and accumulate over time Aitken, In our laboratory, these sediments are exposed to an external stimulus blue-green light and the trapped electrons are released.

The released electrons emit a photon of light upon recombination at a similar site. In order to relate the luminescence given off by the sample to an age, we first need to obtain the dose equivalent to the burial dose. Following the single-aliquot regenerative SAR method of Murray and Wintle , the dose equivalent De is calculated by first measuring the natural luminescence of a sample.

Then, the bleached sample is given known laboratory doses of radiation, referred to as regenerative doses. The regenerative dose data are fit with a saturating exponential to generate a luminescence dose-response curve. The De is calculated by the intercept of the natural luminescence signal with the generated curve. A curve is generated for each aliquot subsample , multiple aliquots are needed to obtain an accurate De.

Optically stimulated luminescence

Scientists in North America first developed thermoluminescence dating of rock minerals in the s and s, and the University of Oxford, England first developed the thermoluminescence dating of fired ceramics in the s and s. During the s and s scientists at Simon Frasier University, Canada, developed standard thermoluminescence dating procedures used to date sediments. In , they also developed optically stimulated luminescence dating techniques, which use laser light, to date sediments.

The microscopic structure of some minerals and ceramics trap nuclear radioactive energy.

When light is used, on the other hand, the technique is described as OSL. Measuring the amount of energy released in conjunction with a.

In physics , optically stimulated luminescence OSL is a method for measuring doses from ionizing radiation. It is used in at least two applications:. The method makes use of electrons trapped between the valence and conduction bands in the crystalline structure of certain minerals most commonly quartz and feldspar. The ionizing radiation produces electron-hole pairs: Electrons are in the conduction band and holes in the valence band.

The electrons that have been excited to the conduction band may become entrapped in the electron or hole traps. Under the stimulation of light, the electrons may free themselves from the trap and get into the conduction band. From the conduction band, they may recombine with holes trapped in hole traps. If the centre with the hole is a luminescence center radiative recombination centre , emission of light will occur. The photons are detected using a photomultiplier tube. The signal from the tube is then used to calculate the dose that the material had absorbed.

The OSL dosimeter provides a new degree of sensitivity by giving an accurate reading as low as 1 mrem for x-ray and gamma ray photons with energies ranging from 5 keV to greater than 40 MeV. The OSL dosimeter’s maximum equivalent dose measurement for x-ray and gamma ray photons is rem. For beta particles with energies from keV to in excess of 10 MeV, dose measurement ranges from 10 mrem to rem.

Optically Stimulated Luminescence (OSL) Dating

Optically stimulated luminescence dating at Rose Cottage Cave. A single-grain analysis demonstrates that the testing procedure for feldspar fails to reject single aliquots containing feldspar and the overestimate of age is attributed to this. Seven additional luminescence dates for the Middle Stone Age layers combined with the 14 C chronology establish the terminal Middle Stone Age deposits at 27 years ago, while stone tool assemblages that are transitional between the Middle Stone Age and the Late Stone Age are dated to between 27 years and 20 years ago.

Although there are inconsistencies in the Middle Stone Age dates, the results suggest that the Howiesons Poort at Rose Cottage Cave dates to between 70 years and 60 years ago. Much of the rich archaeological heritage in southern Africa is older than 50 years, which is the limit of the ubiquitous 14 C dating technique. In order to make appropriate inter-site comparisons of artefactual evidence, and further to compare the trajectory of human adaptation with external factors such as changing climates, it is necessary to establish a reliable chronological framework.

nescence (OSL) dating of sediments has led to considerable ad- vance in the geochronology of the Quaternary. OSL dating is a well established technique to.

Dating techniques of interest to archaeologists include thermoluminescence, optically stimulated luminescence, electron spin resonance, and fission track dating, as well as techniques that depend on annual bands or layers, such as dendrochronology , tephrochronology , and varve chronology. Single Quartz OSL ages can be determined typically from to , years BP, and can be reliable when suitable methods are used and proper checks are done.

Optical dating using Optically stimulated luminescence OSL has been used on sediments. In multiple-aliquot testing, a number of grains of sand are stimulated at the same time and the resulting luminescence signature is averaged. In contrast to the multiple-aliquot method, the Single-aliquot-regenerative-dose SAR method tests the burial ages of individual grains of sand which are then plotted.

Mixed deposits can be identified and taken into consideration when determining the age [5]. Infrared stimulated luminescence IRSL dating of potassium feldspars has been used. Feldspar IRSL techniques have the potential to extend the datable range out to a million years as feldspars typically have significantly higher dose saturation levels than quartz, though issues regarding anomalous fading will need to be dealt with first. Surfaces made of granite, basalt and sandstone, such as carved rock from ancient monuments and artifacts in ancient buildings has dated using luminescence in several cases of various monuments.

Thermoluminescence TL research was focused on heated pottery and ceramics, burnt flints, baked hearth sediments, oven stones from burnt mounds and other heated objects.

Luminescence Dating: Applications in Earth Sciences and Archaeology

Introduction How do we measure the OSL signal? How do we measure the radiation dose rate? Another way of dating glacial landforms is optically stimulated luminescence dating OSL. OSL is used on glacial landforms that contain sand, such as sandur or sediments in glacial streams. The OSL signal is reset by exposure to sunlight, so the signal is reset to zero while the sand is being transported such as in a glacial meltwater stream.

Luminescence dating refers to a group of methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence. It includes techniques such as optically stimulated luminescence (OSL).

Optical : Relating to the use of visible or near-visible light. Stimulated : To excite with a stimulus light or heat. Optically stimulated luminescence : The emission of light from crystalline materials when stimulated by light following previous absorption of energy from radiation. Luminescence dating consists of a family of analytical methods, most of which are used in archaeological research. They can be applied to samples ranging in age from just a few years to several hundreds of thousands of years beyond the range of radiocarbon dating , and they are, therefore, able to cover a time interval that includes important turning points in the evolution of humans.

The choice of luminescence method depends on the availability of appropriate minerals, the time period of Skip to main content Skip to table of contents. This service is more advanced with JavaScript available. Encyclopedia of Geoarchaeology Edition. Contents Search.

Luminescence dating

Resources home v2. Introduction Services Prices. Application Central for samples up to about Lund containing quartz. Technical Geography Laboratory All sediments contain trace minerals including uranium, thorium and potassium.

Luminescence dating techniques determine the last exposure to light of natural minerals; optically stimulated luminescence (OSL) dating of sand-sized quartz.

The OSL optically stimulated luminescence dating method exploits dosimetric properties of grains of minerals naturally occurring in sediments and man-made materials. In archaeology the OSL method is used to date pottery and other heated materials e. When compared with the radiocarbon method it makes possible dating objects containing no organic matter or originating in periods for which the radiocarbon method is less accurate due to the shape or lack of the calibration curve.

This paper discusses the details of recent advances in the method and several examples of its application to material from archaeological excavations of Medieval to Palaeolithic sites. Unable to display preview. Download preview PDF. Skip to main content. This service is more advanced with JavaScript available. Advertisement Hide. Conference paper.

Landauer OSL Technology Movie